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Abstract
Yu, Brown and Chuang investigated the entanglement attainable from unitary
transformed thermal states in liquid-state nuclear magnetic resonance (NMR).
Their research gave insight into the role of entanglement in a liquid-state NMR
quantum computer. However, they assumed that the Zeeman energy of each
nuclear spin which corresponds to a qubit takes a common value for all; there is
no chemical shift. In this paper, we research a model with chemical shifts and
analytically derive the physical parameter region where unitary transformed
thermal states are entangled, by employing the positive partial transposition
(PPT) criterion with respect to any bipartition. The analysis taking account of
the chemical shift reveals how the difference between quantum gates reflects
on the physical parameter region where unitary transformed thermal states are
entangled. In addition, we examine the distillability of unitary transformed
thermal states and the effect of the chemical shifts on the boundary between
the separability and the nonseparability.

PACS numbers: 03.67.Mn, 03.67.Lx

1. Introduction

Quantum mechanics has very different conceptual and mathematical characters from those of
classical mechanics. The superposition and the entanglement (nonseparability) of quantum
states make the difference clear. Recently, these characterizations have been utilized for a
newly developing quantum technology. Actually, quantum entanglement is deeply related to
quantum information processing (QIP) [1].

1751-8113/07/4714263+15$30.00 © 2007 IOP Publishing Ltd Printed in the UK 14263

http://dx.doi.org/10.1088/1751-8113/40/47/016
mailto:oota@hep.phys.waseda.ac.jp
mailto:motoyuki@hep.phys.waseda.ac.jp
mailto:ohba@waseda.jp
http://stacks.iop.org/JPhysA/40/14263


14264 Y Ota et al

The role of entanglement in quantum computing has been researched from various
viewpoints. In particular, the entanglement generation by quantum dynamics, or quantum
algorithms, can give us useful information [2–4]. Recently, Yu, Brown and Chuang [4]
investigated the entanglement of unitary transformed thermal states in a liquid-state nuclear
magnetic resonance (NMR) quantum computer. Such states are defined as the density matrices
transformed from the thermal state in a liquid-state NMR quantum computer by a specific
class of unitary operators. Their definition will be explained in section 2.2. Furthermore, we
call such states Bell-transformed thermal states. The thermal state in [4] is separable (i.e.,
there is no quantum correlation) [5] and characterized by two physical parameters: the one
is the number of qubits and the other is a measure of the state’s polarization. The authors in
[4] studied two kinds of Bell transformations. One of their central interests is the difference
between the Bell-transformed thermal states and effective pure states. The effective pure state
is the convex sum of the identity operator and a pure state, and a typical one is used in the
current liquid-state NMR quantum computer [6–8]. They concluded that the former should
be more easily entangled than the latter; the Bell-transformed thermal states can be entangled
even in the physical parameter region where effective pure states are separable.

Their research is very important for the following three reasons. First, they focused
an elementary state in a liquid-state NMR quantum computer. Braunstein et al [9] pointed
out that the effective pure states should be almost separable in the current liquid-state NMR
experiments. After their study, various studies on the role of entanglement in liquid-state NMR
quantum computing were done (see [4] for additional references). One should note that the
most natural quantum state is the thermal one in liquid-state NMR and an effective pure state is
constructed from it by a sequential operation of several quantum gates. Therefore, the authors
in [4] investigated the entanglement of a more elementary state than effective pure states in
liquid-state NMR quantum computers. Second, they attempted to reveal the role of mixed-
state entanglement in quantum computing. Its evaluation and meaning will be more subtle
than is the case with pure states. Nevertheless, they can be characterized from the viewpoint of
quantum communication. In particular, distillability is important [10–12]. If a mixed state is
distillable, it is useful for QIP (e.g., quantum teleportation); we can distill maximal entangled
states by using a number of the copies, and local operations and classical communication
(LOCC). Accordingly, their research could lead to an alternative understanding of mixed-
state entanglement from the viewpoint of quantum computing. Finally, as mentioned in the
beginning of this section, their work is related to the generation of entanglement by quantum
dynamics. Actually, they found the difference of the entanglement generation between the
two Bell transformations.

In this paper, we analytically derive, in a more general case, the physical parameter
region where the Bell-transformed thermal states are entangled; specifically, the effect of the
chemical shift [8, 13] is included in our Hamiltonian. The authors in [4] assumed that each
nuclear spin which corresponds to a qubit has the common Zeeman energy. However, this
implies that one cannot access the individual qubit; it is not a realistic model. Our interest
is to understand the role of an important element for implementing quantum computation in
the entanglement generation by quantum gates. The chemical shift is just such an important
element in liquid-state NMR quantum computers. Moreover, the analysis taking account of
the chemical shift will reveal how the difference between the Bell transformations reflects
on the physical parameter region where the Bell-transformed thermal states are entangled.
It will also be necessary if we are to evaluate the attainability of entanglement from the
thermal state in the experiments. Our method of evaluating the entanglement is simple and
straightforward: the positive partial transposition (PPT) criterion [14–16]. We analytically
calculate the eigenvalues of the partial transposed Bell-transformed thermal states and find
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the smallest ones. Here, we would like to emphasize that, in [4], the Dür–Cirac classification
[17] has been applied to the evaluation of the entanglement with respect to two types of
Bell-transformed thermal states, but it does not necessarily work.

This paper is organized as follows. In section 2, we introduce the Hamiltonian and
the Bell transformations. As in [4], we concentrate on two unitary operators of the Bell
transformations. In section 3, to begin, we explain how to specify an individual bipartition
and briefly review the PPT criterion. Next, we explain the Bell-diagonal state [18, 19] in an
N-qubit system, which plays a central role in this paper. Then, we show the main results in
section 3.4: the sufficient conditions for the nonseparability of the Bell-transformed thermal
states with respect to any bipartition. In section 4, we show the necessary conditions for the
full separability and the full distillability. In particular, we show the necessary and sufficient
conditions for full distillability when there is no chemical shift. In section 5, we examine the
effect of the chemical shift on the boundary between the separability and the nonseparability
determined by the PPT criterion. We summarize our results in section 6. Furthermore, in
appendix, we briefly review the Dür–Cirac classification and show some examples in which
this method does not work.

2. Model

2.1. Hamiltonian

In a liquid-state NMR quantum computer, the qubit is the nuclear spin in the molecule. We
assume the number of qubits is N in one molecule. The dipole–dipole interaction between
the molecules in solutions is negligible because they randomly collide with each other [8].
Therefore, we concentrate on the internal degrees of freedom (i.e., the nuclear spin) of one
molecule. Let us define the computational bases as |0〉i and |1〉i (i〈0|0〉i = 1,i〈1|1〉i = 1 and
i〈0|1〉i = 0). The subscription i(=1, 2, . . . , N) is the label of the qubit. Furthermore, we
introduce the following standard operators: Ii = |0〉i〈0|+ |1〉i〈1|, Zi = |0〉i〈0|−|1〉i〈1|, Xi =
|0〉i〈1| + |1〉i〈0| and Hi = (Zi + Xi)/

√
2. We analyze the Hamiltonian

H =
N∑

i=1

hνi

2
Zi, (1)

where hνi is the Zeeman energy of the ith qubit. Note that we neglect the J -coupling between
the neighboring qubits because it is much smaller than the Zeeman energy in a liquid-state
NMR [8, 13]. The model includes the important physical effect; every value of hνi is
different from the others, due to the chemical shift. The difference allows us to access each
qubit individually. In [4], every hνi is a common value. In this paper, we do not mention
the relationship between the above computational basis and the physical spin state, and the
Hamiltonian (1) is a mathematical model.

2.2. Bell-transformed thermal states

Let us consider the separable state which is characterized by a set of physical parameters.
Our interest is the parameter region in which the state transformed from a separable one by
quantum gates is a nonseparable one. Therefore, we have to specify a suitable initial separable
state and quantum gates which generate the entanglement in a liquid-state NMR quantum
computer.
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First, we refer to the initial separable state. The system in a liquid-state NMR experiment
is a thermal equilibrium state with room temperature. Accordingly, the most natural choice
for the initial state is the thermal state

ρth = 1

Z
e−βH. (2)

In our model, the Hamiltonian H is given by (1). Here, β and Z = tr e−βH are the inverse
temperature and the partition function, respectively. Note that state (2) is a separable state
with respect to any bipartition of the system. The physical parameters in (2) are the number
of the qubit N, the Zeeman energy of the ith qubit hνi and the inverse temperature β, which
are regarded as the free parameters. Actually, the values of the parameters are restricted by
the experiments for liquid-state NMR quantum computing. For the comparison with [4], we
introduce the parameter αi = βhνi/2, which is called a measure of the state’s polarization in
the reference. Hereafter, we simply call it polarization. The physical meaning of αi is quite
clear. Let us consider the expectation value of the z-component of the total spin operator
Jz

(≡ ∑N
i=1 Zi/2

)
with respect to ρth: mz ≡ tr(Jzρth) = − ∑N

i=1(tanh αi)/2. We assume the
value of N is fixed. The value of |mz| becomes larger as αi increases; the system is strongly
polarized in the direction of the z-axis. Summarizing the above argument, we can say that the
initial thermal state (2) is characterized by the number of qubits N and the polarization αi .

Next, we explain the unitary operators for generating entanglement. We will have to
investigate all types of the quantum gates which are considered as the generator of entanglement
and essential parts in a quantum algorithm. However, this task will be very difficult. In this
paper, as in [4], we concentrate on the following two unitary operators: the controlled-NOT–
Hadamard (CH) transformation, UCH = Ufan(H1 ⊗ I ), and the CH-fanout transformation,
UCF = UCHUfan. The fanout gate Ufan is defined as follows: Ufan = |0〉1〈0| ⊗ I + |1〉1〈1| ⊗ X,

where I = ⊗N
i=2 Ii, X = ⊗N

i=2 Xi . The above unitary operators are examples in quantum
gates, but they include the essential quantum gates for the generation of entanglement:
controlled-NOT gates and Hadamard gates. In this case, they generate the entanglement
between the first qubit and the remaining qubits. Let us consider, for example, the case of
N = 3. When the initial state is |000〉 = |0〉1 ⊗ |0〉2 ⊗ |0〉3, we obtain the following results:
UCH|000〉 = (|000〉 + |111〉)/√2 and UCF|000〉 = (|000〉 + |111〉)/√2.

In summary, we examine the entanglement of the states

ρCH = UCHρthU
†
CH, (3)

ρCF = UCFρthU
†
CF. (4)

The above states are called the Bell-transformed thermal states. The initial state ρth is separable
with any bipartition of the system for the arbitrary values of N and {αi}Ni=1.

3. Entanglement of Bell-transformed thermal states with chemical shift

3.1. Specification of a bipartition

In order to study the entanglement of a system, it is necessary to specify the way to divide it
into two parts. We divide the N-qubit system into two subsystems, party A and party B, in
the following [4]. First, let us consider a set of binary numbers, {ki}Ni=1 (ki = 0, 1). When
ki = 0, let the ith qubit be in party A. On the other hand, when ki = 1, it is in party B.
We always set k1 = 0; the first qubit is always in party A. For convenience, we introduce an
integer k = ∑N

i=2 ki2i−2. Therefore, a partition is specified if an integer k(∈ [1, 2N−1 − 1])
is chosen; we call such a partition the bipartition k. Let us choose, for instance, k = 4 in the
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case of N = 4 (i.e., k2 = 0, k3 = 0 and k4 = 1). The elements of party A are the 1st, 2nd and
3rd qubit, and party B contains only the 4th qubit.

3.2. PPT criterion

The PPT criterion is the simple and computable way to investigate entanglement. We briefly
recapitulate it. Let us consider a density matrix ρ in a quantum system with finite dimension
d. The total system is divided into two subsystems, system A and system B. Introducing an
orthonormal basis of the system A, {|ui〉A}dA

i=1 and the system B, {|vk〉B}dB
k=1, we can expand

the density matrix ρ as follows:

ρ =
dA∑

i,j=1

dB∑
k,l=1

C(ik|j l)|ui〉A〈uj | ⊗ |vk〉B〈vl|, (5)

where C(ik|j l) is a complex number and d = dAdB. Next, using (5), we define the partial
transposition of the density matrix with respect to the system B as

ρTB =
dA∑

i,j=1

dB∑
k,l=1

C(il|jk)|ui〉A〈uj | ⊗ |vk〉B〈vl|. (6)

Then, we calculate the eigenvalues of ρTB and investigate their positivity. If all eigenvalues
of (6) are positive (i.e., ρTB � 0), it is called a density matrix with PPT. On the other hand, if
at least one of its eigenvalues is negative, it is called a density matrix with the negative partial
transposition (NPT). The most important thing to note here is the following criterion (i.e., the
PPT criterion):

ρ: separable ⇒ ρ: PPT, (7)

or, equivalently,

ρ: NPT ⇒ ρ: entangled (nonseparable). (8)

Moreover, the following statement is also known [11, 12]:

ρ: distillable ⇒ ρ: NPT. (9)

3.3. Bell-diagonal states

Before showing our results, we explain the special class of a density matrix, the Bell-diagonal
state [18, 19]. It plays a central role in later discussion.

To begin, let us explain the generalized Greenberger–Horne–Zeilinger (GHZ) state
[4, 17] in the N-qubit system

|�±
j 〉 = 1√

2
(|0j 〉 ± |1j̄〉) (0 � j � 2N−1 − 1), (10)

where j = ∑N
i=2 ji2i−2 for the binary number ji (=0, 1), |0j 〉 = |0〉1

⊗N
i=2 |ji〉i and

|1j̄ 〉 = |1〉1
⊗N

i=2 |1 − ji〉i . The symbol j̄ means a bit-flip of j : j̄ = 2N−1 − 1 − j .
We can easily find the generalized GHZ states are the elements of an orthonormal basis of the
Hilbert space corresponding to the N-qubit system.

We introduce the following density matrix:

ρBD =
2N−1−1∑

j=0

(
ω+

j

∣∣�+
j

〉〈
�+

j

∣∣ + ω−
j

∣∣�−
j

〉〈
�−

j

∣∣), (11)



14268 Y Ota et al

where ω±
j = 〈

�±
j

∣∣ρBD

∣∣�±
j

〉
and

∑2N−1−1
j=0

(
ω+

j + ω−
j

) = 1. Equation (11) is a Bell-diagonal
state in an N-qubit system. We will show that ρCH and ρCF take the form of (11) in the
following subsection.

We introduce the Bell-diagonal state so that we can easily obtain its partial transposition
[19]. We confirm this in the following procedure. First, let us consider a bipartition k.
Second, we represent

∣∣�±
j

〉〈
�±

j

∣∣ in the computational basis:
∣∣�±

j

〉〈
�±

j

∣∣ = (|0j 〉〈0j | ±
|0j 〉〈1j̄ | ± |1j̄ 〉〈0j | + |1j̄ 〉〈1j̄ |)/2. The diagonal parts of

∣∣�±
j

〉〈
�±

j

∣∣ are |0j 〉〈0j | and
|1j̄ 〉〈1j̄ |, and they are invariant under the partial transposition with respect to party B.
The off-diagonal ones are |0j 〉〈1j̄ | and |1j̄ 〉〈0j | because j �= j̄ . If the ith qubit is in
party B (i.e., ki = 1), the binary number j of the off-diagonal parts is transformed into
ji + 1(=ji + ki) modulo 2 (e.g., 0 + 1 = 1 and 1 + 1 = 0) by the partial transposition
with respect to party B. On the other hand, if the ith qubit is in the party A (i.e., ki = 0),
the corresponding ji is unchanged; ji = ji + ki . As a result, we obtain the following
expression:

(∣∣�±
j

〉〈
�±

j

∣∣)TB = (∣∣�+
j

〉〈
�+

j

∣∣ +
∣∣�−

j

〉〈
�−

j

∣∣ ± ∣∣�+
j⊕k

〉〈
�+

j⊕k

∣∣ ∓ ∣∣�−
j⊕k

〉〈
�−

j⊕k

∣∣)/2,

where j ⊕k = ∑N
i=2 li2i−2 (li ≡ ji +ki mod 2). Accordingly, the Bell-diagonal state partially

transposed with respect to party B is given by

ρ
TB
BD =

2N−1−1∑
j=0

(
µ+

j

∣∣�+
j

〉〈
�+

j

∣∣ + µ−
j

∣∣�−
j

〉〈
�−

j

∣∣), (12)

where

µ±
j = ω+

j + ω−
j

2
± ω+

j⊕k − ω−
j⊕k

2
. (13)

3.4. Sufficient conditions for nonseparability

First of all, let us show (3) and (4) are just the Bell-diagonal state. Using the standard relations
(H1 ⊗ I )|0j 〉 = (|0j 〉 + |1j 〉)/√2, (H1 ⊗ I )|1j 〉 = (|0j 〉 − |1j 〉)/√2, Ufan|0j 〉 = |0j 〉, and
Ufan|1j 〉 = |1j̄ 〉, we obtain the following results:

〈
�±

j

∣∣ρCH

∣∣�±
j ′
〉 = δjj ′

Z
e∓α1 e− ∑N

i=2(−1)ji αi , (14)

〈
�±

j

∣∣ρCF

∣∣�±
j ′

〉 = δjj ′

Z
e∓α1 e∓ ∑N

i=2(−1)ji αi , (15)〈
�±

j

∣∣ρCH

∣∣�∓
j ′
〉 = 〈

�±
j

∣∣ρCF

∣∣�∓
j ′
〉 = 0, (16)

where 0 � j, j ′ � 2N−1 − 1. Consequently, both ρCH and ρCF are Bell-diagonal states.
Let us define the mean values of the polarization of party A, ξ and party B, η for given j

and k as follows:

ξ = 1

N − w

∑
i∈Ak

(−1)ji αi, η = 1

w

∑
i∈Bk

(−1)ji αi, (17)

where Ak = {i ∈ Z; ki = 0, 1 � i � N}, Bk = {i ∈ Z; ki = 1, 1 � i � N}. In (17), we
conventionally assign zero to j1. The number w is the total number of the elements of party
B (1 � w � N − 1). In other words, it is the Hamming weight of k (i.e., the number of one
in {ki}Ni=1). Each of ξ and η is a function of j if N, {αi}Ni=1, and k are fixed.

Then, we calculate the eigenvalues of ρ
TB
CH and ρ

TB
CF with respect to the bipartition k. Now

that we know the general expression (13) for the partially transposed Bell-diagonal state, we
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easily obtain the desired results of Bell-transformed thermal states with the chemical shift.
For a given bipartition k, the eigenvalue of ρ

TB
CH is given by

µ±
CH,j = 1

Z
eα1 cosh α1 e−(N−w)ξn±

CH(η), (18)

where n±
CH(η) = e−wη ∓ tanh α1 ewη. Similarly, the eigenvalue of ρ

TB
CF is given by

µ±
CF,j = 1

Z
n±

CF(ξ, η), (19)

where n±
CF(ξ, η) = e∓(N−w)ξ cosh(wη) ± e±(N−w)ξ sinh(wη).

In general, the relative signs between αi’s can be different. For the latter discussion, we
evaluate the range of ξ and η for the given {αi}Ni=1 and k. We rewrite (17) as

ξ = 1

N − w

∑
i∈Ak

(−1)ji+si |αi |, η = 1

w

∑
i∈Bk

(−1)ji+si |αi |,

where si = 0 for αi � 0 and si = 1 for αi < 0. We readily obtain the inequalities

|ξ | � 1

N − w

∑
i∈Ak

|αi | ≡ ξ∗, |η| � 1

w

∑
i∈Bk

|αi | ≡ η∗. (20)

The condition for ξ = ξ∗(≡ξmax) is easily found: ji +si = 0 (mod) 2 for any i ∈ Ak . Similarly,
the conditions for η = η∗(≡ηmax) and η = −η∗(≡ηmin) are given by ji + si = 0 (mod) 2 and
ji + si = 1 (mod) 2 for any i ∈ Bk , respectively. Note that the minimum value of ξ is not
always −ξ∗ because j1 = 0; it is −ξ∗ + [1 + (−1)s1 ]|α1|/(N − w) ≡ ξmin.

Now, we analytically derive the sufficient conditions for the nonseparability of ρCH and
ρCF. What is needed is that we search for the minimum values of the eigenvalues which can
be negative.

First, we examine (18). In order to discuss definitely, we assume α1 is positive for a while.
We find that the eigenvalue µ−

CH,j is always positive because all factors of the right-hand side
are positive. Then we focus on µ+

CH,j . The positivity is determined by the value of n+
CH(η).

Note that it is a monotonic decreasing function of η, because ∂n+
CH(η)/∂η < 0. Therefore,

the minimum value of n+
CH(η) is given by n+

CH(ηmax) = n+
CH(η∗) = e−wη∗ − tanh α1ewη∗ . We

examine the case of negative α1 in turn. In the case, the value of n−
CH(η) is important for the

examination of the positivity of ρCH. We can readily check that the minimum value of η−
CH(η)

is given by n−
CH(ηmax) = n−

CH(η∗) = e−wη∗ − tanh |α1|ewη∗ . Summarizing the above argument,
we can say that ρCH is NPT with respect to the bipartition k if and only if

n+
CH(η∗) < 0 ⇐⇒ e−2wη∗ < tanh |α1|. (21)

Second, let us consider (19). We concentrate on the behavior of n±
CF(ξ, η) because

Z > 0. First, we investigate n+
CF(ξ, η). Note that the value is always positive for η � 0

or ξ, η � 0. Hereafter, we consider the case of ξ > 0 and η < 0. In this case, we find
∂n+

CF(ξ, η)/∂ξ < 0 and ∂n+
CF(ξ, η)/∂η > 0. Therefore, the minimum value of n+

CF(ξ, η)

is given by n+
CF(ξmax, ηmin) = n+

CF(ξ∗,−η∗) = e−(N−w)ξ∗ cosh(wη∗) − e(N−w)ξ∗ sinh(wη∗).
Next, we consider n−

CF(ξ, η). It should be noted that the following relation is fulfilled:
n+

CF(ξ, η) = n−
CF(−ξ,−η). Therefore, we readily obtain the information on n−

CF(ξ, η).
Through the above arguments, the minimum value of n−

CF(ξ, η) is given by n−
CF(ξmin, ηmax) =

n−
CF(ξmin, η∗) = e−(N−w)ξ∗+[1+(−1)s1 ]|α1| cosh(wη∗) − e(N−w)ξ∗−[1+(−1)s1 ]|α1| sinh(wη∗). On the

other hand, n−
CF(ξmin, η∗) is clearly greater than or equal to n+

CF(ξ∗,−η∗). Consequently, ρCF

is NPT with respect to the bipartition k if and only if

n+
CF(ξ∗,−η∗) < 0 ⇐⇒ cosh [(N − w)ξ∗ − wη∗] < sinh (Nᾱ) , (22)

where Nᾱ ≡ ∑N
i=1 |αi | = (N − w)ξ∗ + wη∗.
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Table 1. Necessary and sufficient conditions for NPT with respect to the bipartition k for each Bell
transformation, where ξ∗ = ∑

i∈Ak
|αi |/(N − w), η∗ = ∑

i∈Bk
|αi |/w and ᾱ = ∑N

i=1 |αi |/N .

Bell transformation Condition for NPT

CH e−2wη∗ < tanh |α1|
CH-fanout cosh[(N − w)ξ∗ − wη∗] < sinh(Nᾱ)

We summarize the sufficient conditions for the nonseparability of ρCH and ρCF with
respect to the bipartition k in table 1. Note that the information of the bipartition k is included
in ξ∗ and η∗ through Ak and Bk . The definitions of Ak and Bk are explained below (17).
With respect to the bipartition k, ρCH is an entangled state if the inequality (21) is fulfilled,
and ρCF is an entangled one if the inequality (22) is fulfilled. The sufficient condition for the
nonseparability of ρCH is given by α1 and the mean value of the magnitude of polarization for
party B, η∗; it does not depend on αi (i ∈ Ak) in party A, except for α1. On the other hand,
the sufficient condition of ρCF is determined by ξ∗ and η∗; it depends on the mean values of
the magnitude of polarization for party A and party B. It should be noted that if every αi

is a common value and positive, we can readily check whether both sufficient conditions (21)
and (22) are equivalent to the corresponding results in [4].

3.5. Characterization of the Bell transformations

It is important for the deep understanding of the quantum algorithm to characterize the
property of quantum dynamics in terms of entanglement. Let us therefore consider the ability
and mechanism of the Bell transformations UCH and UCF to generate entanglement from the
thermal state.

The authors in [4] discussed this ability without taking account of the chemical shift.
They concluded that UCF is a more effective Bell transformation than UCH, because the
parameter region, in which ρCF is entangled with respect to a given bipartition, is wider than
the corresponding one of ρCH. Such a result is quite natural because the number of the
controlled-NOT gates in UCF is twice as many as in UCH.

The analysis of the sufficient conditions for the nonseparability of the Bell-transformed
thermal states with the chemical shift reveals the difference between UCH and UCF from
another point of view. We assume that the maximum value of η, η∗ is given with respect to
a bipartition k. In this case, let us consider the necessary information of party A needed to
examine the entanglement of the Bell-transformed thermal states by the PPT criterion. As
for ρCH, from (21), we find that only the value of α1 is needed; in other words, the local
information of party A is required. On the other hand, we have to know the maximum value
of ξ , ξ∗ to investigate whether ρCF is entangled or not, according to (22); in other words, the
global information of party A is required. These observations can lead to understanding how
the Bell transformations entangle party A and party B.

4. Full separability and full distillability

Let us consider an N-particle system. A state of this system is called fully separable (or
N-separable) if the corresponding density matrix ρ can be written as a convex combination of
direct product states:

ρ =
∑

i

pi

N⊗
j=1

ρ
(j)

i

(∑
i

pi = 1, pi � 0

)
, (23)
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where ρ
(j)

i is the density matrix on the partial Hilbert space corresponding to the j th particle
[17, 20]. One can easily check that a density matrix has PPT with respect to any bipartition of
the system if it is fully separable. On the other hand, we call ρ fully distillable if it is distillable
with respect to any bipartition (i.e., we can create a maximal entangled pair between qubits in
party A and party B by a number of the copies and LOCC), according to [4]. Through statement
(9), we can readily show that a density matrix has NPT with respect to any bipartition, if it is
fully distillable.

As in [4], we examine the full separability and the full distillability of ρCH and ρCF. We
summarize the necessary condition for the separability of ρCH and ρCF. According to (21)
and (22), the necessary conditions for the separability of ρCH and ρCF, respectively, with
respect to the bipartition k are given by

e−2wη∗ � tanh|α1|, (24)

cosh[(N − w)ξ∗ − wη∗] � sinh(Nᾱ). (25)

Moreover, from (9), we find that the necessary conditions for the distillability of ρCH and
ρCF with respect to the bipartition k are given by (21) and (22), respectively. Note that the
equalities of (24) and (25) give the boundaries between the separability and the distillability.

Let us consider the full separability and the full distillability of ρCH. The necessary
condition for the full separability and the full distillability is given by mink

(
e−2wη∗

)
� tanh |α1|

and maxk

(
e−2wη∗

)
< tanh |α1|, respectively. In conclusion, we obtain the necessary conditions

for the full separability and the full distillability of ρCH as follows:

ρCH: fully separable ⇒ e−2bmax � tanh|α1|, (26)

ρCH: fully distillable ⇒ e−2bmin < tanh|α1|, (27)

where bmax = maxk(wη∗) = Nᾱ − |α1| and bmin = mink(wη∗) = mini �=1(|αi |). The value of
wη∗ takes the maximum value bmax when k = 2N−1 − 1 (i.e., w = N − 1). On the other hand,
it takes the minimum value bmin when ki corresponding to the minimum value of αi’s is 1 and
the remainders are 0 (i.e., w = 1).

Similarly, we obtain the following results for ρCF:

ρCF: fully separable ⇒ cosh dmin � sinh(Nᾱ), (28)

ρCF: fully distillable ⇒ cosh dmax < sinh(Nᾱ), (29)

where dmax = maxk |(N − w)ξ∗ − wη∗| and dmin = mink |(N − w)ξ∗ − wη∗|. The value of
|(N − w)ξ∗ − wη∗| takes the maximum value, dmax, when the difference between (N − w)ξ∗
and wη∗ is the largest. When αi = α(>0) for any i, the condition for dmax is quite simple. The
value of dmax is (N − 2)α, where k = 2N−1 − 1 (i.e., w = N − 1) or k = 1 (i.e., w = N − 1).
On the other hand, it takes the minimum value, dmin when (N − w)ξ∗ is the closest value to
wη∗. If every αi is a common value, the value of dmin is 0, where w = �N/2�. Here, the
symbol �x� means the greatest integer that is less than or equal to x ∈ R.

Our results (26)–(29) are the necessary conditions for the full separability or the full
distillability. When αi = α(>0) for any i, the authors in [4] showed the sufficient condition
for the full distillability, through the statements proved in [17]. In this case, combining
our results (27) and (29) with theirs, we can obtain the following necessary and sufficient
conditions:

ρCH: fully distillable ⇐⇒ e−2α < tanh α, (30)
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Figure 1. Boundary between the separability and the nonseparability in term of the PPT criterion.
The solid line is for δ = 0.1, the broken line is for δ = 0.01 and the broken dotted line is for δ = 0;
actually, the difference between these is very small (see the insets). (a) The CH transformation
(k = 2N−1 − 1). (b) The CH-fanout transformation (k = 2N−1 − 2�N/2�−1).

ρCF: fully distillable ⇐⇒ tanh α > e−2(N−1)α. (31)

(We can find that the necessary condition for the full distillability of ρCF is cosh[(N − 2)α] <

sinh(Nα) from (29) and this inequality is equal to the corresponding expression in (31) after
a short calculation.) Therefore, we obtain the complete physical parameter regions in which
ρCH and ρCF can be useful for QIP.

5. Boundary between separability and nonseparability

The equalities in the inequalities (24) and (25) imply the boundary between the separability
and the nonseparability in term of the PPT criterion. We investigate the effect of the chemical
shift on such boundaries. Hereafter, we assume all αi’s are positive, for the sake of simplicity.

Through the above argument, we easily obtain the following expression of the boundary
for ρCH:

e−2wη∗ = tanh α1. (32)

Similarly, the boundary for ρCF is given by

cosh[(N − w)ξ∗ − wη∗] = sinh(Nᾱ). (33)

To compare the boundaries with the chemical shift to those without it, we try a toy model
for αi . The polarization αi divides into a reference value α(>0) and the deviation δαi from
it: αi = α + δαi . Here, we regard xi ≡ δαi/α as a uniform random variable in [−δ, δ]
(0 � δ < 1). Therefore, in our toy model, the polarization of the ith qubit is given by
αi = α(1 + xi). Furthermore, the value of α is regarded as the mean value of polarization.

Let us explain how to calculate the boundaries. In the first, we choose the value of δ;
actually, δ = 0.1, 0.01 and 0. Then, a sequence of random numbers in [−δ, δ] is generated
by the Mersenne Twister [21]. Next, we specify a bipartition. For the sake of simplicity, we
assume the first N − w qubits are in party A and the latter w qubits are in party B. Finally,
we numerically calculate the value of α satisfying (32) or (33) for a given N by the bisection
method.

In figures 1(a) and (b), we show the boundaries on an (α,N) plan for a specific sequence of
xi . The horizontal axis is the common logarithm of the inverse of α. The larger value of
log10 α−1 corresponds to the case of the higher temperature. The longitudinal axis is the
number of qubits. The solid line, the broken line and the broken dotted line correspond to the
boundaries for δ = 0.1, δ = 0.01 and δ = 0, respectively. We show the results for ρCH with
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respect to a bipartition k = 2N−1 − 1 (i.e., w = N − 1) in figure 1(a), and the case of ρCF with
respect to a bipartition k = 2N−1 − 2�N/2�−1 (i.e., w = �N/2�) in figure 1(b). The left sides of
those lines are the parameter regions where ρCH and ρCF are nonseparable with respect to the
corresponding bipartition. We find that the clear distinction among the different values of δ is
invisible in both figures 1(a) and (b); for example, denoting the value of α on the boundary
as αb(δ) for a given δ, we can find that | log10 [αb(0)/αb(δ)] | � 10−2 for δ = 0.1 and 0.01,
as N is large. In addition, we can find a similar behavior even if we change the sequence of
random variables and the kind of bipartitions. Consequently, the effect of the chemical shift
on the boundary between the separability and the nonseparability is negligible in our model
for {αi}Ni=1. This result implies that one has only to examine the number of qubits N and the
mean value of polarization α for the determination of the entanglement of the Bell-transformed
thermal states (3) and (4).

Let us consider why the effect of the chemical shift is negligible. The boundaries for
both ρCH and ρCF between the separability and the nonseparability are given by (32) and (33),
respectively. Those equations are mainly determined by the mean values of the polarization
of party A, ξ∗ and party B, η∗. Therefore, the deviation from the mean value of αi’s is not
important for the determination of the boundaries. However, the model for αi is quite simple;
the distribution of αi is uniform and random. We have also assumed that αi’s are positive in
this section. Therefore, it is necessary to investigate a more general and realistic model for αi .

The chemical shifts of qubits are necessary for the realization of quantum computation
in a liquid-state NMR system. What we want to know is the role of such an important effect
for implementing quantum computation in the entanglement generation by quantum gates.
Through our examinations, we find the effect of the chemical shift on the boundary between
the separability and nonseparability is fortunately negligible. The presence of the chemical
shift is attributed to the difference of the Zeeman energy between the nuclear spins; it is
related to the individual and local property of the qubits. Therefore, such local information
on the qubits is not so important for examining roughly whether the state transformed from
the thermal state by quantum gates is entangled in liquid-state NMR. On the other hand, we
expect the chemical shift will have a considerable effect on the quantitative evaluation of
entanglement generation by quantum gates. We will study this issue in future.

6. Summary

We have analytically derived the physical parameter region where the Bell-transformed thermal
states are entangled in the presence of the chemical shift, by employing the PPT criterion with
respect to any bipartition. The chemical shifts of qubits are necessary for the realization of
quantum computation in a liquid-state NMR system, because their difference allows us to
control the individual qubits. The role of such an important element in liquid-state NMR on
the entanglement generation has been studied. Two kinds of Bell transformations, the CH
transformation UCH and the CH-fanout transformation UCF, have been examined, as in [4].
With respect to the bipartition k, ρCH is an entangled state if the inequality (21) is fulfilled and
ρCF is an entangled one if the inequality (22) is fulfilled. We summarize our results in table 1.
If the every αi is a common value, our results are equal to the corresponding ones in [4]. There
exists an obvious difference between (21) and (22) with respect to their dependence on αi .
The sufficient condition for the nonseparability of ρCH is given by α1 and the mean value of
|αi | for party B, η∗; it does not depend on αi (i ∈ Ak) in party A, except for α1. On the other
hand, the sufficient condition of ρCF is determined by ξ∗ and η∗, the mean values of |αi | for
party A and party B, respectively.
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Next, we have derived the necessary conditions for the full separability and the full
distillability through the above analytical results. On the other hand, the authors in [4]
obtained the sufficient conditions when all αi’s are equal. We have obtained the necessary and
sufficient conditions for the full distillability of ρCH and ρCF in this case, combining our results
with theirs. Accordingly, we can completely characterize the physical parameter regions in
which those unitary transformed thermal states can be useful for QIP, if there is no chemical
shift. When the chemical shift exists, we will have to examine the sufficiency of our results.

Finally, we have investigated the effect of the chemical shift on the boundary between the
separability and the nonseparability determined by the PPT criterion. We have shown such an
effect on the boundaries should be negligible. Actually, one has only to know the number of
qubits N and the mean value of the magnitude of polarization |αi | to evaluate the entanglement
of the Bell-transformed thermal states (3) and (4). This result is quite natural, because the
boundaries for both ρCH and ρCF between separability and nonseparability dominantly depend
on the mean values of |αi | for party A, ξ∗ and party B, η∗. We will have to research a
more general and realistic model for αi for examining the effect of the chemical shifts on the
boundary between the separability and the nonseparability.

It is also important to examine the difference between ρCH and ρCF (i.e., UCH and UCF)
in terms of the entanglement generation. The authors in [4] concluded that UCF is a more
effective Bell transformation than UCH because the parameter region in which ρCF is fully
distillable is wider than the corresponding one of ρCH. The analysis taking account of the
chemical shift has revealed the difference between UCH and UCF from another point of view.
When the value of η∗ is given with respect to a fixed bipartition k, the value of α1 is necessary
to examine the entanglement of ρCH; the local information of party A is required. On the other
hand, for ρCF, the mean value of |αi | for party A, ξ∗ is essential; the global information of party
A is required. In this paper, we have obtained the analytical expressions of the eigenvalues of
ρ

TB
CH and ρ

TB
CF. Therefore, the results allow us to characterize UCH and UCF in more detail; for

instance, we can evaluate the negativity, which is an entanglement measure [22–24]. We will
show the results in the near future.

Research on entanglement in liquid-state NMR involves various aspects of quantum
information theory, for example, the role of mixed states in quantum computing and the
classification of entanglement. One should note that the achievable range of the physical
parameters N and αi’s is limited in a current liquid-state NMR experiment. Actually, it
may be difficult to compare the theoretical results with the experiments. However, several
experimental developments have been reported in liquid-state NMR, for example, the highly
polarized initial states [25, 26] and the number of qubits greater than ten [27, 28]. Furthermore,
research on a solid-state NMR quantum computer [29, 30], which can relax the limitation of
liquid-state NMR, has been developed steadily. Consequently, we expect that theoretical
research on the entanglement in liquid-state NMR could be connected with these experiments
in the future.
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Appendix

The Dür–Cirac classification [17] is a very effective way to evaluate the separability or the
distillability of density matrices, of either pure or mixed states, in a multiqubit system, and it
is widely used [4, 20, 31]. However, we have to take care of using it; we do not always obtain
information on their entanglement from the method proposed in [17]. In the appendix, we
show several examples in which the method does not work. Unfortunately, we do not know
what kind of density matrices have the problem. Nevertheless, at the end of the appendix, we
propose a prescription for solving this problem in specific examples.

First of all, we summarize the strategy of the Dür–Cirac classification. In order to evaluate
the entanglement of a quantum state by the PPT criterion, one must examine the positivity of
the partial transposed density matrices. In general, such tasks will be difficult as the number
of qubits becomes large and many choices of bipartitions exist. On the other hand, if one uses
the Dür–Cirac classification, it is only necessary to calculate some specific matrix elements
of the state concerned. The main idea is that, using a sequence of local operations, one can
transform an arbitrary density matrix ρ in a N–qubit system into the following state whose
property of entanglement is easily examined:

ρN = λ+
0

∣∣�+
0

〉〈
�+

0

∣∣ + λ−
0

∣∣�−
0

〉〈
�−

0

∣∣ +
2N−1−1∑

j=1

λj

(∣∣�+
j

〉〈
�+

j

∣∣ +
∣∣�−

j

〉〈
�−

j

∣∣). (A.1)

The original density matrix ρ is related to ρN by the following expressions: λ±
0 = 〈

�±
0

∣∣ρ∣∣�±
0

〉
and 2λj = 〈

�+
j

∣∣ρ∣∣�+
j

〉
+

〈
�−

j

∣∣ρ∣∣�−
j

〉
. The property of ρN is characterized as follows:

ρN : PPT with respect to a bipartition k ⇐⇒  � 2λk (A.2)

or

ρN : NPT with respect to a bipartition k ⇐⇒  > 2λk, (A.3)

where  = ∣∣λ+
0 −λ−

0

∣∣. The most important key idea is that the entanglement does not increase
through local operations. Accordingly, if ρN is a nonseparable state with a bipartition, ρ is
also such a state. It should be noted that we obtain information on the entanglement of ρ only
if ρN is a nonseparable state.

Now, we show three examples. The first one is the case in which the Dür–Cirac
classification works well. The remaining two are not such cases. Hereafter, we concentrate
on a two-qubit system. Therefore, the value of k in (A.2) and (A.3) is always 1. In the first,
let us consider the following state:

ρiso = (1 − f ) 1
4 (I1 ⊗ I2) + f

∣∣�+
0

〉〈
�+

0

∣∣, (A.4)

where − 1
3 � f � 1. The above density matrix is called an isotropic state [12]. Directly

using the PPT criterion [14–16], we readily find ρiso is an entangled state if f > 1
3 . On

the other hand, we apply the Dür–Cirac method to ρiso. We obtain the following results:〈
�+

0

∣∣ρiso

∣∣�+
0

〉 = (1 + 3f )/4,
〈
�−

0

∣∣ρiso

∣∣�−
0

〉 = (1 − f )/4 and
〈
�+

1

∣∣ρiso

∣∣�+
1

〉
+

〈
�−

1

∣∣ρiso

∣∣�−
1

〉 =
(1 − f )/2. Accordingly, using (A.3), we also find ρiso is an entangled one if f > 1

3 .
Next, we consider a slightly different state from ρiso,

ρ ′
iso = (1 − f ) 1

4 (I1 ⊗ I2) + f
∣∣�+

1

〉〈
�+

1

∣∣, (A.5)

where − 1
3 � f � 1. Note that the condition for the nonseparability of ρ ′

iso is the same one
as ρiso; ρ ′

iso is an entangled state if f > 1
3 . This result is quite natural, because the state

ρiso is transformed into ρ ′
iso by a local unitary operator; ρ ′

iso = (I1 ⊗ X2)ρiso(I1 ⊗ X2)
†. On



14276 Y Ota et al

the other hand, we obtain the eigenvalues in the form of (A.1) as follows:
〈
�+

0

∣∣ρ ′
iso

∣∣�+
0

〉 =
(1 − f )/4, 〈�−

0 |ρ ′
iso|�−

0 〉 = (1 − f )/4 and 〈�+
1 |ρ ′

iso|�+
1 〉 + 〈�−

1 |ρ ′
iso|�−

1 〉 = (1 + f )/2.
Therefore, the value of  is less than 2λ1 for the arbitrary value of f and condition (A.2)
is satisfied. This might imply that ρ ′

iso is always separable. However, ρ ′
iso is local unitary

equivalent to the entangled state ρiso
(
f > 1

3

)
. In conclusion, we cannot obtain information on

the entanglement of ρ ′
iso by the method in [17], because the entangled state ρ ′

iso is transformed
into a separable state by LOCC.

The third example is related to the task in this paper. We consider the case of N = 2
and α1 = α2 = α in (3). We have known the condition for the nonseparability of ρCH; ρCH

is an entangled state if e−2α > tanh α. However, the value of  is less than 2λ1 for any α

because
〈
�+

0

∣∣ρCH

∣∣�+
0

〉 = e−2α/Z,
〈
�−

0

∣∣ρCH

∣∣�−
0

〉 = Z−1 and
〈
�+

1

∣∣ρCH

∣∣�+
1

〉
+

〈
�−

1

∣∣ρCH

∣∣�−
1

〉 =
(1 + e2α)/Z . Accordingly, we cannot also obtain information on the entanglement of ρCH by
the method in [17].

The authors in [4] pointed out that the local operations can decrease the entanglement of
the state concerned and an alternative method is necessary. In particular, they discussed a more
effective procedure for evaluating entanglement than the local operations in the Dür–Cirac
classification in terms of the mathematical theory of majorization. Finally, we comment on
a loop hole in the Dür–Cirac classification from another point view: we attempt to construct
a prescription for solving the problem. As has been mentioned, the isotropic state ρiso is
transformed into ρ ′

iso by the local unitary operator I1 ⊗ X2. The method in [17] works for
the former but not for the latter. This suggests that, by suitable local unitary operators,
the state for which the Dür–Cirac classification does not work, could be transformed into a
proper one to which their method is applicable. Let us consider the above third example.
When we use the local unitary operator I1 ⊗ X2, the state concerned is transformed into
ρ ′

CH = (I1 ⊗ X2)ρCH(I1 ⊗ X2)
†, where 〈�+

0 |ρ ′
CH|�+

0 〉 = Z−1, 〈�−
0 |ρ ′

CH|�−
0 〉 = e2α/Z and

〈�+
1 |ρ ′

CH|�+
1 〉 + 〈�−

1 |ρ ′
CH|�−

1 〉 = (e−2α + 1)/Z . Calculating  and 2λ1, we can obtain the
non-trivial expression for ρ ′

CH; for example, ρ ′
CH is NPT if and only if sinh(2α) > 1. If ρ ′

CH is
entangled, the corresponding state ρCH is also considered to be entangled. Therefore, we obtain
the sufficient condition of the nonseparability for ρCH by using the Dür–Cirac classification;
such a condition is just sinh(2α) > 1. This condition is equal to the one which is derived by
the use of (21). It is necessary to examine whether such a prescription is generalized or not.
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